Preferred Device

Sensitive Gate Silicon Controlled Rectifiers Reverse Blocking Thyristors

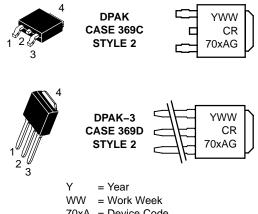
PNPN devices designed for high volume, low cost consumer applications such as temperature, light and speed control; process and remote control; and warning systems where reliability of operation is critical.

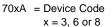
Features

- Small Size
- Passivated Die Surface for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Recommend Electrical Replacement for C106
- Surface Mount Package Case 369C
- To Obtain "DPAK" in Straight Lead Version (Shipped in Sleeves): Add '1' Suffix to Device Number, i.e., MCR706A1
- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings: Human Body Model, 3B > 8000 V
- Machine Model, C > 400 V
- Pb–Free Packages are Available

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Max	Unit
Peak Repetitive Off-State Voltage (Note 1) (T _C = -40 to +110°C, Sine Wave, 50 to 60 Hz, Gate Open) MCR703A MCR706A MCR708A	V _{DRM,} V _{RRM}	100 400 600	V
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	V _{RSM}	150 450 650	V
On–State RMS Current (180° Conduction Angles; $T_C = 90$ °C)	I _{T(RMS)}	4.0	A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I _{T(AV)}	2.6 1.6	A
Non-Repetitive Surge Current (1/2 Sine Wave, 60 Hz, $T_J = 110^{\circ}$ C) (1/2 Sine Wave, 1.5 ms, $T_J = 110^{\circ}$ C)	I _{TSM}	25 35	A
Circuit Fusing (t = 8.3 msec)	l ² t	2.6	A ² sec
Forward Peak Gate Power (Pulse Width \leq 1.0 µsec, T _C = 90°C)	P _{GM}	0.5	W
Forward Average Gate Power (t = 8.3 msec, $T_C = 90^{\circ}C$)	P _{G(AV)}	0.1	W
Forward Peak Gate Current (Pulse Width \leq 1.0 µsec, T _C = 90°C)	I _{GM}	0.2	A
Operating Junction Temperature Range	TJ	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C


ON Semiconductor®


http://onsemi.com

SCRs 4.0 AMPERES RMS 100 – 600 VOLTS

G = Pb-Free Package

PIN ASSIGNMENT				
1	Gate			
2	Anode			
3	Cathode			
4	Anode			

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

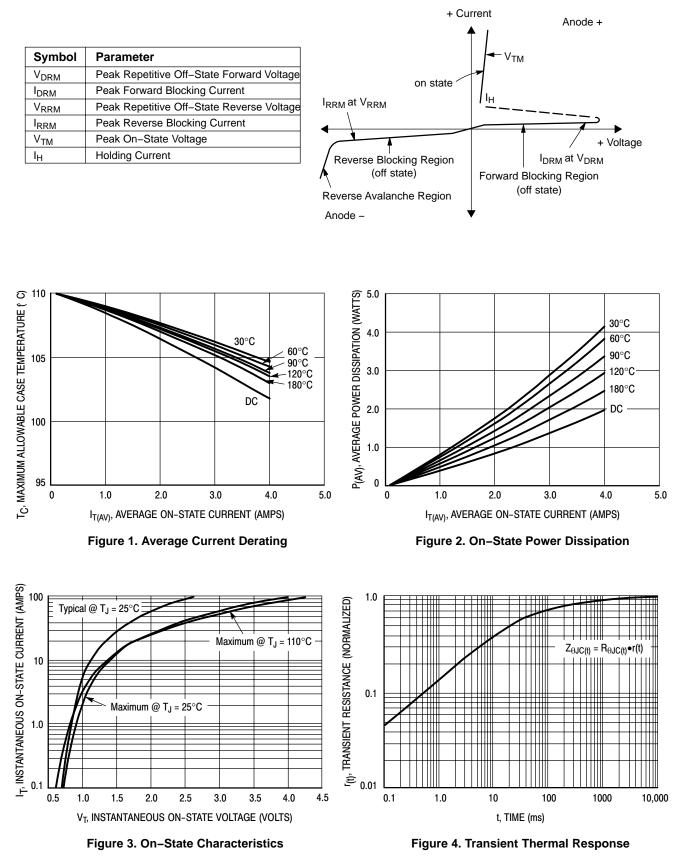
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ ext{ heta}JC}$	8.33	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	R_{\thetaJA}	80	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	ΤL	260	°C

2. Case 369C when surface mounted on minimum pad sizes recommended.

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit		
OFF CHARACTERISTICS							
Peak Repetitive Forward or Reverse Blocking Current (V _{AK} = Rated V _{DRM} or V _{RRM} ; R _{GK} = 1 K Ω)	$T_{C} = 25^{\circ}C$ $T_{C} = 110^{\circ}C$	I _{DRM} , I _{RRM}			10 200	μΑ	
ON CHARACTERISTICS					•		
Peak Forward "On" Voltage (I _{TM} = 8.2 A Peak, Pulse Width = 1 to 2 ms, 2% Duty Cycle)		V _{TM}	-	-	2.2	V	
Gate Trigger Current (Continuous dc) (Note 3) (V_{AK} = 12 Vdc, R	I _{GT}		25 -	75 300	μΑ		
Gate Trigger Voltage (Continuous dc) (Note 3) $(V_{AK} = 12 \text{ Vdc}, R_L = 24 \Omega)$	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	V _{GT}	-		0.8 1.0	V	
Gate Non-Trigger Voltage (Note 3) (V _{AK} = 12 Vdc, R _L = 100 Ω ,	V _{GD}	0.2	-	-	V		
Holding Current (V_{AK} = 12 Vdc, Gate Open) T _C = 25°C (Initiating Current = 200 mA) T _C = -40°C	Ι _Η			5.0 10	mA		
Peak Reverse Gate Blocking Voltage (I_{GR} = 10 μ A)		V _{RGM}	10	12.5	18	V	
Peak Reverse Gate Blocking Current (V _{GR} = 10 V)		I _{RGM}	-	-	1.2	μΑ	
Total Turn-On Time (Source Voltage = 12 V, $R_S = 6 k\Omega$) ($I_{TM} = 8.2 A$, $I_{GT} = 2 mA$, Rated V_{DRM}) (Rise Time = 20 ns, Pulse	e Width = 10 μs)	t _{gt}	-	2.0	-	μS	
DYNAMIC CHARACTERISTICS				•			
Critical Rate of Rise of Off–State Voltage (V_D = Rated V_{DRM} , R_{GK} = 1 k Ω , Exponential Waveform, T_C =	= 110°C)	dv/dt	-	10	-	V/μs	
Repetitive Critical Rate of Rise of On–State Current (Cf = 60 Hz, I _{PK} = 30 A, PW = 100 μs, diG/dt = 1 A/μs)		di/dt	-	_	100	A/μs	


3. R_{GK} current not included in measurement.

ORDERING INFORMATION

Device	Package Type	Package	Shipping [†]
MCR703AT4	DPAK	369C	2500 Tape & Reel
MCR703AT4G	DPAK	369C (Pb–Free)	2500 Tape & Reel
MCR706AT4	DPAK	369C	2500 Tape & Reel
MCR706AT4G	DPAK	369C (Pb–Free)	2500 Tape & Reel
MCR708A	DPAK	369C	2500 Tape & Reel
MCR708AG	DPAK	369C (Pb–Free)	2500 Tape & Reel
MCR708A1	DPAK-3	369D	75 Units / Rail
MCR708A1G	DPAK-3	369D (Pb–Free)	75 Units / Rail
MCR708AT4	DPAK	369C	2500 Tape & Reel
MCR708AT4G	DPAK	369C (Pb–Free)	2500 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Voltage Current Characteristic of SCR

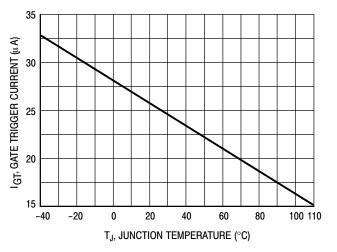


Figure 5. Typical Gate Trigger Current versus Junction Temperature

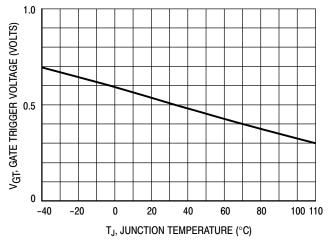


Figure 6. Typical Gate Trigger Voltage versus Junction Temperature

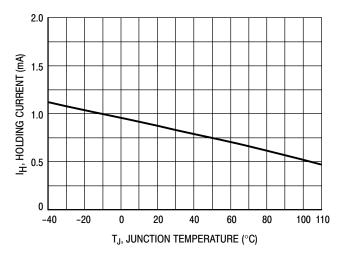


Figure 7. Typical Holding Current versus Junction Temperature

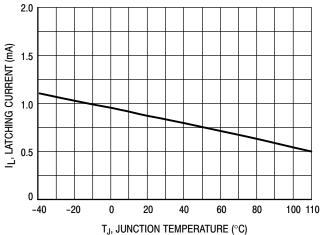
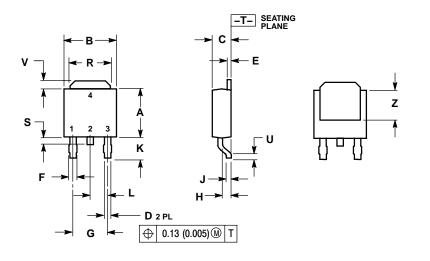
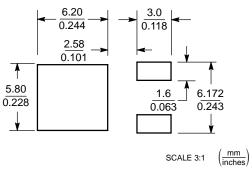



Figure 8. Typical Latching Current versus Junction Temperature

PACKAGE DIMENSIONS

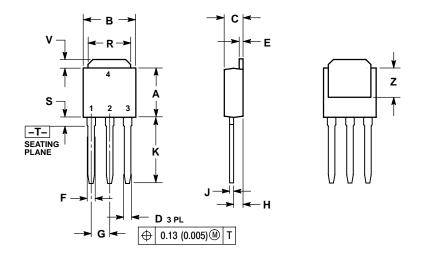
DPAK CASE 369C ISSUE O



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.180	BSC	4.58 BSC	
н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
κ	0.102	0.114	2.60	2.89
L	0.090 BSC		2.29	BSC
R	0.180	0.215	4.57	5.45
S	0.025	0.040	0.63	1.01
U	0.020		0.51	
V	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DPAK-3 CASE 369D-01 ISSUE B

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.							
		INCHES		MILLIN			
	DIM	MIN	MAX	MIN	MAX		
	Α	0.235	0.245	5.97	6.35		
	В	0.250	0.265	6.35	6.73		
	С	0.086	0.094	2.19	2.38		
	Р	0.027	0.025	0.60	0 00		

DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
ĸ	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2: PIN 1. GATE 2. DRAIN

3. SOURCE 4. DRAIN

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death asosciated with such unintended or unauthorized use persons and science to grant design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative